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Abstract:  

The ISAAC cellular automaton combat model appears to behave in one of two 
qualitatively different ways: either the automata fight as a massed force, or they form 
dispersed fractal-like distributions. The latter has properties not described by the 
Lanchester equation, owing to the ability of the automata to concentrate their 
firepower. This behaviour has a non-intuitive effect on the relationship between kill 
probability of the automata and attrition rate, providing insight into the possible ways 
a dispersed force may fight, and leading to a markedly different formulation of 
combat attrition from the more conventional description suggested by Lanchester. In 
particular, certain ensembles of runs are characterised by one force doing substantially 
better than might be expected from a Lanchester model. This improvement is not due 
to chance, but rather due to the fact that one force has been able to concentrate its 
forces in an opportune way. The results suggest that this characteristic of dispersed 
forces may allow poorly armed forces to occasionally overcome superiorly armed 
forces, particularly if that force does nothing to prevent itself from being concentrated 
upon. 
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EXECUTIVE SUMMARY 
Background 

In 1914 Lanchester laid the foundation for many of the mathematical analysis 
methods used to describe warfare this century. He did this by introducing a pair of 
equations dependent on the numerical strength of the opposing forces, and the killing 
rate of individuals in each force. The solutions to these equations are used as the basis 
for many modern combat models and studies. Furthermore, most analytical combat 
models, which model battles by representing individual participants and the physics of 
their equipment, strongly resemble probabilistic versions of Lanchester�s model.  

The main weakness with this approach is that it treats the combatants as cannon 
fodder, the objective being simply to grind the opponent down by brute force. Noting 
the coincidence of the Lanchester equations and the bloody and futile four years of 
European land war from 1914-1918, it is tempting to say that their development was a 
retrograde step from which military analysis is yet to recover.  

Recently, New Zealand�s Defence Operational Technology Establishment has been 
working with the United States Marine Corp as part of a collaborative effort called 
Project Albert. This project is dedicated to the application of complex adaptive system 
models and associated analytic techniques to decisions made by the Marine Corp and 
the New Zealand Army.  

In applying the methods of cellular automata to combat modelling, it is hoped to 
consider what happens to the possible combat outcomes when the participants are 
allowed to react to each other. The current model in use here is called ISAAC 
(Irreducible Semi-Autonomous Adaptive Combat), and was developed for the Marine 
Corp Combat Development Command, by the Center for Naval Analyses. This report 
explores the nature of the ISAAC model, particularly in regard to the way it models 
dispersed forces, something that the Lanchester approach is unable to do adequately. 

Sponsor 

New Zealand Army. 

Aim 

To demonstrate the ability of cellular automata models to describe the modern 
dispersed battlefield. 

Results 

Some significant differences between cellular automaton and Lanchester models are 
identified, particularly in regard to modelling manoeuvre warfare.  

It was found that by introducing automata �personalities� to the entities being 
modelled, a dispersed force would adopt a fractal distribution, reflecting the degree to 
which firepower was concentrated. Such a distribution is neither uniformly dispersed, 
nor tightly concentrated in space.  
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The Red automata in the cases examined were able to concentrate their firepower to 
improve the rate of attrition of the Blue force in circumstances where they lacked the 
firepower to destroy Blue on contact. At the same time, if Red needed to concentrate 
its forces for long periods of time to achieve this, Blue would have the opportunity to 
exploit the gaps created in the battlefield.  

Selecting just those runs for which Red was able to cause some predetermined level of 
Blue casualties, the attrition rate for this ensemble obeyed a power-law dependence 
on kill probability. The power law exponent was apparently related to the fractal 
dimension of the distribution of forces. The value of the power-law exponent was 
typically around 1/3. By contrast, a stochastic Lanchester model produced a power-
law exponent of nearly 1. Thus this ensemble does better as the value of the kill 
probability of its individual units is decreased than would be expected from a 
Lanchester model, because the units have concentrated their firepower in a beneficial 
way. What is so interesting about this is that the superior performance of this 
ensemble is not entirely due to luck (as it would be for a stochastic Lanchester 
model), but due to the way the automata have distributed themselves for each run in 
this ensemble.  

This suggests a poorly armed Red force can cause considerable damage to a 
superiorly armed Blue force if it is able to appropriately concentrate its forces. This is 
a particularly important consideration for peacekeeping activities in the Third World, 
where a poorly armed or trained militia, which may not seem like much of a threat, 
can cause a disaster for a well-equipped modern force. On the other hand, if the Blue 
force is able to react to such a concentration of force, it will often cause firepower 
�holes� in the Red distribution which it can exploit. Doing so will allow it to perform 
much better in a typical run. However, the distribution of outcomes becomes more 
complicated. Giving both sides the ability to react to each other�s attempts to 
concentrate firepower leads to a much wider range of outcomes for the model, and 
may be somewhat bimodal, with Blue either being caught by a Red firepower trap, or 
being able to create firepower gaps which it can exploit. In short, treating one side (or 
both) as a �lifeless mass� fails to produce the full range of possible outcomes. 
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1. Introduction 

In 1914, Lanchester1 laid the foundation for many of the mathematical analysis 
methods used to describe warfare this century. He did this by introducing a pair of 
coupled ordinary differential equations: 
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where R and B represent the numerical strength at time t of opposing Red and Blue 
forces, and k1 and k2 the killing rate of a Red/Blue individual. The solutions to these 
equations or numerical versions of these are used as the basis for many modern 
combat models and studies2,3,4,5. Furthermore, most analytical combat models, which 
model battles by representing individual participants and the physics of their 
equipment, strongly resemble quantised, stochastic versions of Lanchester�s model6.  

The main weakness with this approach is that it treats the combatants as cannon 
fodder, the objective being simply to grind the opponent down by brute force. Noting 
the coincidence of equations 1.1 and the bloody and futile four years of European land 
war from 1914-1918, it is tempting to say that their development was a retrograde 
step from which military analysis is yet to recover. Indeed, knowledge of these 
equations failed to prevent the combined forces of France and Britain from being 
overrun by a German Army still recovering from years under the restrictions of the 
Treaty of Versailles, and were virtually useless for the Western forces in Vietnam. 
Why in recent times the austere mathematics of the Lanchester equation and its 
modern offspring, the analytical combat model, seem to have been preferred to the 
basic principles of war developed over the last two-and-a-half thousand years, and 
described as early as Sun Tzu�s �The Art of War�, and demonstrated by Alexander 
the Great, Napoleon Bonaparte, and more recently, George Patton and the Viet Cong, 
is something of an enigma. This appears to have been recognised by a growing 
number of military writers (e.g. the US Marine Corp�s Lt. Gen. J. E. Rhodes7, Lt. Col. 
J. F. Watson of the UK�s Combined Arms Training Centre Battle Group8, and Maj. 
Gen. R. H. Scales Jr, US Army War College9, to name some examples). 

Commanders such as Napoleon appear to have had a strong feel for manoeuvre and 
the importance of troop quality, factors which have proved vital on the battlefield, but 
which are neglected by the Lanchester equation. They are particularly important on 
the modern battlefield, where high-lethality weapons have forced troops to be 
deployed in a much more dispersed and fluid manner. In this report, we examine the 
use of cellular automaton models to describe combat, highlighting the difference 
between these and the Lanchesterian approach.  

2. Cellular automaton model 

Recently, New Zealand�s Defence Operational Technology Establishment has been 
working with the United States Marine Corp as part of a collaborative effort called 
Project Albert. This project is dedicated to the application of complex adaptive system 
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models and associated analytic techniques to decisions made by the Marine Corp and 
the New Zealand Army.  

Our early efforts centre on the application of a cellular automaton model to combat 
modelling. In applying the methods of cellular automata to combat modelling, it is 
hoped to consider what happens to the possible combat outcomes when the 
participants are allowed to react to each other. Other workers have already shown that 
non-intuitive trends emerge from stochastic Lanchester models simply by splitting 
them into different arrangements of smaller engagements10. Automaton models extend 
upon this by possessing the ability to make decisions about how and when to split, 
and for a given run the �personalities� of the automata generally determine when the 
fight is over. By contrast, questions such as how the forces split and what the 
withdrawal level is are awkward for the Lanchester approach, because they depend on 
the arbitrary decision of the modeller. Consequently, automaton models are becoming 
an increasingly popular tool for combat modelling11. 

The model used here is called ISAAC (Irreducible Semi-Autonomous Adaptive 
Combat), and was developed for the Marine Corp Combat Development Combat by 
the Center for Naval Analyses.  

The model is relatively straight-forward and only a brief description will be given. It 
is described in detail in Ilachinski12, and the executable program may be downloaded 
from the Web address www.cna.org/ISAAC. For the simulations here, the automata 
have a single set of characteristics for each side, described by parameters which break 
down into three classes: attributes, personalities and meta-personalities. The first class 
describes movement rate, weapons range, weapons kill probability, and sensor range. 
The second class are weightings which describe an automaton�s propensity to move 
toward/away from friendly/enemy automata, and toward/away from a goal (flag) 
point. The model calculates automata moves by summing the number of friendly and 
enemy automata within a threshold range of each square within movement range, and 
uses the personality weightings to determine the �penalty� associated with each move 
in terms of how it positions the automaton relative to the friendly/enemy forces and 
the goal point. Communications may also be simulated, by including the number of 
friendly/enemy automata visible to other friendly automata within a set 
communications range. 

The third class modifies the above procedure. Three such parameters were used: the 
cluster parameter, which �turns off� an automaton�s propensity to move towards 
friendly automata once a threshold cluster size has been reached; the advance 
parameter, which requires a threshold number of friendly automata to be surrounding 
an automaton before it will advance towards its goal; and a combat parameter, which 
will only allow an automata to advance towards the enemy once a threshold numerical 
advantage has been achieved.    

The automata themselves can be in one of three states: alive, in which case they use 
the baseline parameters; injured, where a secondary set of parameters may be used to 
indicate the automata has suffered damage; and dead, in which case the automaton is 
removed from the battlefield. 
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3. Behaviour of the model and application 

The principal difficulty in applying the ISAAC model to real questions of interest to 
the New Zealand Army and the Marine Corp is identifying the types of situations 
where automata models provide useful results that traditional methods do not. 
Qualitatively examining the behaviour of the model, the automata appear to fight in 
two distinct ways (see Figure 1): I) by clumping together, or II) fighting in a 
dispersed, fluid pattern6. 

The two cases shown in Figure 1 are I) two equal forces attempting to capture a �flag� 
at the centre of the battlefield, and II) a numerically inferior Blue force (20 automata) 
trying to break through a dispersed and numerically superior Red force (40 automata). 
Case I is representative of the concept of �linear� warfare (i.e. armies fighting in very 
rigid formations such as lines or columns), while case II is a much more fluid 
situation reminiscent of manoeuvre warfare. Case I is no longer considered a feasible 
method of warfighting, due to the high lethality of modern weapons. Having forces in 
such high concentrations risks making them easy targets. In manoeuvre warfare, the 
emphasis is on using mobility to destroy an opponent�s key points or otherwise 
disadvantaging him, rather than destroying him by attrition alone.  

This paper deals with variations of case II. We imagine that the Blue force must 
manoeuvre its way through a dispersed Red force to strike some vulnerable point. As 
such, the focus here is on Blue success, rather than how much damage Blue causes to 
Red. It is imagined that if Blue achieves its goal, it will cause sufficient damage to 
Red�s command and supply infrastructure as to be disastrous. 

At a glance, one might expect that the motion of the automata is Brownian for case II, 
leading to an on-average uniformly random distribution of Red forces. However, the 
personality rules of the simulation impose structure on the distribution as automata are 
attracted towards/repelled by friendly/enemy automata. This leads to groupings of 
automata into clusters which may �cooperate� in attacks on opposing automata.  

Three variations on case II are considered: i) the Red force does not react to the Blue 
force; ii) Red forces within detection range of Blue will cluster around it as it attempts 
to break through; iii) the Blue force will react to the Red force as it surrounds it. The 
parameters used for each set of automata are given in the appendix.  

Case iii is shown in Figure 1. The initial distributions of the Red and Blue forces are 
random, but confined within a finite area. As Blue enters the area containing the Red 
force, Red reacts by clustering around it. For this case, Blue has a weighting to move 
towards Red, so that its lead elements can attack and push back nearby Red forces. 
This quickly leads to a dispersed battlefront.  
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Figure 1: Evolution of the ISAAC model demonstrating the difference between the 

�clumpy� and �dispersed� cases. 
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One method for describing the degree of clustering on the battlefield is to obtain a 
fractal dimension for the distribution. This is done using a box-counting technique, 
finding the smallest square containing all the automata, and splitting this into four 
equal squares and counting the number of squares containing automata. Then each of 
these new squares is split in four, with automata-containing squares counted again, 
and so on. This is illustrated schematically in Figure 2. Note that this is done just for 
the Red Forces, since for the analysis that follows, we shall be mainly concerned with 
the concentration of Red firepower. If the distribution is fractal, then the number of 
squares containing automata should exhibit a non-integer power-law dependence on 
the size of the squares used.  

The �box-counting� fractal dimension13, D, defined here as: 
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→
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(where d is the width of the box, and N the number of boxes required to cover all the 
automata), is a power-law exponent, since: 

 DddN −=)(  (3.2) 

The application of such techniques to automata models was pioneered by workers 
such as Bak and Chen14,15, who showed that non-integer power-laws characteristic of 
fractal distributions emerged from sets of automaton rules such as the Game of 
Life16,17. Obtaining the fractal dimension allows a measurement of the degree to 
which one side concentrates its forces, while still remaining somewhat dispersed. A 
force which is spread uniformly across the battlefield will have D = 2 (using the 
definition in 3.2). Conversely, an extremely concentrated force will tend towards D = 
0, which represents the force occupying a single point. A fractal distribution 
represents an �in-between� state where the force is neither tightly bound nor 
uniformly dispersed. Furthermore, fractals can generally be viewed as patterns which 
have structure on all scales. From the point of view of the distribution of the forces, 
the existence of a non-integer D implies that the automata form clusters which can be 
viewed as a collection of sub-clusters, which themselves are collections of smaller 
clusters, and so on, rather than simply being a single clump of automata. 

In order to accurately obtain a fractal dimension representative of the distributions 
which evolve from a particular set of parameters, a large ensemble of distributions 
must be used, and an average D found. Figure 3 shows how the mean number of 
boxes containing automata varies with the width of the box for case iii. The first two 
points from the right hand side indicate the cases where the automata occupy all the 
boxes, and are not part of the fractal scaling range.  
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Figure 2: Schematic demonstration of a box-counting technique to determine the 

fractal dimension of the Red distribution. The number of boxes required to cover all 

the Red automata are counted as the size of the boxes is reduced. 
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Figure 3: The non-integer power-law dependence of the number of boxes required 

to cover all automata on the width of the box. 
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Likewise, as the width of the boxes approaches the situation where all boxes contain 
no more than one automaton, the power law breaks down. This leaves a short scaling 
range in between these two extremes. D was estimated as 0.70 for case iii.  

The attrition rate of the Blue force for a given run clearly depends on the degree to 
which Red is able to concentrate its firepower. Ideally, we would like to find a 
relation between D and the attrition rate. Consider the following argument: In a fixed 
time interval, a Blue automaton�s �sensors� on average map out an area (box) 
proportional to the speed it is travelling. The density of Red automata if they are 
encountered is related to the number of boxes of this size that actually contain 
automata. But as seen in Figure 3, this has a non-integer power law dependence on the 
size of the box, and hence on the time interval (i.e. tl ∝ ). In such a case, the attrition 
rate function depends on: 

 ),( box
D

red ntkf
t
B −∆=

∆
∆  (3.3) 

where the variable R in equation 1.1 has been replaced by ∆ t −D nbox, and nbox is the 
average number of Red automata contained in just those boxes that contain automata, 
where the size of the box is the area an automaton typically maps out in a period ∆ t. 
If there exists an ensemble of runs for which Blue meets Red in concentrations 
proportional to ∆ t −D nbox, it may be hypothesised that for this ensemble ∆ B / ∆ t is a 
function of time to a non-integer power, and kill probability. If these are the only two 
variables on which ∆ B / ∆ t depends, then since k has units of (time)-1, dimensional 
arguments require that for this ensemble: 

 )()(~ DrDq tk
t
B ∆

∆
∆  (3.4) 

where r is a non-integer power related to D, the angled brackets denote an ensemble 
average, and the ensemble is conditional on Blue encountering Red in clusters of size 
nbox.  

4. Role of force concentrations in determining outcome 

Figure 5 shows the probability densities for the number of Blue casualties suffered by 
the 500th time step of the model for variations i, ii and iii of case II. The k values were 
set so that the mean casualty level was about 15 per cent, and each distribution 
represents 2000 runs. The important point to realise is that by this time step (and 
indeed, well before), the battle has run its course, so that further casualties are 
unlikely (i.e. Red and Blue are no longer interacting). Thus, casualties do not 
necessarily reach 100 per cent (or some other arbitrary level), because the Blue force 
often breaks through to its goal point, or otherwise avoids encountering 
concentrations of Red, before sustaining heavy casualties. Alternately, Blue�s attack 
may be broken up, with the remnants avoiding Red but failing to reach their goal.  
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Figure 4: Probability densities for the three variations on case I. Each has a mean 

casualty level of 0.15 per cent. 

This behaviour results from the personalities given to the automata. This contrasts 
with stochastic Lanchester models, where a spread of outcomes is expected after a 
given period of time, but the level of casualties at that point represents a �snapshot� of 
casualty levels on the way to some arbitrary withdrawal level.  

Figure 4 thus represents the probability of ending a run in a particular state, defined 
by final casualty levels. Clearly, Blue only reaches a given level of casualties for a 
certain ensemble of runs. These runs represent the occasions where Red was able to 
concentrate its firepower sufficiently to inflict this level. We may explore the nature 
of this ensemble by measuring attrition rate in terms of time taken to reach that level 
of casualties, excluding runs which do not. 

Figure 5 plots attrition rate as a function of k, calculated in this way, for the ensemble 
of runs with greater than 25 per cent Blue casualties. Lowest limits for k were set by a 
requirement for more than a few per cent of the ensemble to reach the 25% Blue 
casualty level. Cases i to iii are as described above, case iv is the linear case (case I 
shown in  
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Figure 5: Mean attrition rate as a function of kill probability. 

Figure 1) and case v is a stochastic Lanchester model. Power laws (hence q values) 
may be found by fitting straight lines on the log-log plot of this data. Note that above 
a certain value for k, the power law breaks down, with the slope tending to zero. This 
represents the case where the kill probability is sufficiently high that Blue is being 
killed almost immediately after encountering Red, so that increasing k has little 
further effect.  

For cases i to iii, q was approximately 0.25, for case iv, q ≈ 0.7, and for case v, q ≈ 
0.9. The relationship between the degree of concentration of Red firepower 
(characterised by D) and the power-law describing the dependence of attrition rate on 
k (characterised by q), conditional on reaching 25% casualties, is shown in Table 1. 
The data suggests an approximate relationship: 

 2/Dq =  (4.1) 

Although the power-law exponents found for k from the data in Figure 5 do not match 
exactly D / 2, it must be recognised that the value of D is difficult to estimate and 
undoubtedly changes as both sides become depleted. Note that: 

 ( ) 2/2/2~ DDDD Addt ≡≡∆  

where A is an area mapped out by an automaton in a time ∆ t. D /2 is then the fractal 
dimension obtained using the area of the box as the measure, rather than box width. 
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We found at least one other example18 where equation 4.1 appears to hold. In that 
case, the Blue force was a reconnaissance group (four automata) attempting to find its 
way through a much larger (16 automata) dispersed Red force. For that case, D = 0.79 
and q = 0.36. However, for the sake of brevity, further details of that study are not 
given here. 

Case (requirement is to reach 

25% casualty level). 

D q 

Dispersed 0.7 0.28 

Linear 1.7  0.86 

Stochastic Lanchester 2 0.9 

Recce 0.79 0.36 

Table 1: Dependence of q on D. 

5. Effect on distribution of outcomes 

If the relationship in equation 4.1 holds, then we can interpret D as being a measure of 
the degree to which Red concentrates its forces for this ensemble. Note that whereas 
in cases ii and iii, Red�s personality traits cause its forces to concentrate in this way, 
for case i the concentration is due to luck: that is, Red causes this level of casualties 
only when Blue is unfortunate enough to run into a concentration of Red. For all three 
cases, the important point is that for the ensembles considered, the effect on Blue 
attrition of lowering Red�s k value is mitigated by the enhancement in firepower due 
to the concentration of Red forces. That is to say, Red does better for this ensemble 
than a Lanchester model would suggest (note from Figure 5 that for a Lanchesterian 
model, the relationship between attrition and k is near linear). However, this firepower 
concentration must be balanced against the gaps in the battlefield it creates, since 
clusters of Red automata must stay together for increasingly long periods to kill their 
target, leaving other areas unprotected. Thus an increasingly large ensemble of runs 
fail to reach 25 per cent casualties. Consequently, the nature of the combat is 
somewhat �bimodal�, especially for low k values. 

This bimodal nature is particularly evident when examining the differences between 
cases i, ii and iii. For case i and case iii, the model rarely reached 25 per cent Blue 
casualties (mean of 15 per cent) once Red k was set at less than 0.02. However, for 
case ii the same mean was obtained when k had a value of only 0.003, as is evident 
from Figure 4. The reason for this superior performance is Red�s propensity to cluster 
for that case. However, allowing Blue to react to Red, as in case iii, improves Blue�s 
performance. This is because the leading Blue elements concentrate firepower on Red 
automata in their path, creating gaps which the following elements may exploit. 
Whether or not Blue is able to penetrate the Red force depends on who is best able to 
concentrate their firepower in a given run. This has a significant effect on the 
distribution of outcomes. The distribution for case iii in Figure 4 suggests a bimodal 
nature, and has a much longer �tail� (i.e. more extreme results) than the other two 
cases. 
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In summary, it appears that if Red behaviour is set so that it deliberately clusters 
around Blue, it substantially improves its chances of killing a given fraction of Blue. 
Blue may counter this by attacking nearby Red, but Red will still sometimes get the 
better of it, inflicting much heavier casualties than is typical.  

6. Discussion and conclusions 

Using a cellular automaton model, some significant differences between this and 
Lanchester models have been highlighted in regard to modelling manoeuvre warfare.  

It was found that by introducing automata �personalities� to the entities being 
modelled, a dispersed force would adapt a fractal distribution, reflecting the degree to 
which firepower was concentrated. Such a distribution is neither uniformly dispersed, 
nor tightly concentrated in space.  

The Red automata in the cases examined were able to concentrate their firepower to 
improve the rate of attrition of the Blue force in circumstances where they lacked the 
firepower to destroy Blue on contact. At the same time, if Red needed to concentrate 
its forces for long periods of time to achieve this, Blue would have the opportunity to 
exploit the gaps created in the battlefield.  

Selecting just those runs for which Red was able to cause some predetermined level of 
Blue casualties, the attrition rate for this ensemble obeyed a power-law dependence 
on kill probability. The power law exponent was apparently related to the fractal 
dimension of the distribution of forces. The value of the power-law exponent was 
typically around 1/3. By contrast, a stochastic Lanchester model produced a power-
law exponent of nearly 1. Thus this ensemble does much better as the value of k is 
decreased than would be expected from a Lanchester model. What is so interesting 
about this is that the superior performance of this ensemble is not entirely due to luck 
(as it would be for a stochastic Lanchester model), but due to the way the automata 
have distributed themselves for each run in this ensemble.  

Note that the linear case (case I in Figure 1) with attrition calculated in the same way 
as for case II behaved in a way which would be reasonably well approximated by the 
Lanchester equation for a range of conditions, showing that automata (or more 
generally, agent) models should not automatically be expected to produce different 
results from the traditional methods.  

The apparent connection between the fractal dimension of the distribution of the 
forces, and the power-law dependence of the attrition rate on kill probability is an 
interesting extension on the work of earlier researchers into automaton models, which 
established that automatons tend to evolve into fractal distributions. Here D may be 
thought of as the degree to which Red is able to concentrate its firepower. This must 
be balanced by two things: firstly, the degree to which Red needs to remain dispersed 
to prevent itself from becoming an easy target for a long-range strike; secondly, the 
degree to which the need for Red to concentrate its firepower is balanced by the gaps 
this creates for Blue. While these two insights might be �intuitively� obvious, they do 
not emerge from either the stochastic or analytical variants of the Lanchester 
equation, without subjective involvement by the modeller.  
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The key result is that either Red concentrates its forces in such a way that it is able to 
destroy Blue at a faster rate than expected from a Lanchester model, or Blue exploits 
the gaps that result from that concentration. This has particularly interesting 
consequences for risk assessment. In particular, an apparently badly armed Red force 
can cause considerable damage to a superiorly armed Blue force if it is able to 
appropriately concentrate its forces. This is a particularly important consideration for 
peacekeeping activities in the Third World, where a poorly armed or trained militia 
which may not seem like much of a threat can in a coordinated attack cause a disaster 
for a well-equipped modern force. On the other hand, if the Blue force is able to react 
to such a concentration of force, it will often cause firepower �holes� in the Red 
distribution which it can exploit. Doing so will allow it to perform much better in a 
typical run. However, the distribution of outcomes becomes more complicated. 
Giving both sides the ability to react to each other�s attempts to concentrate firepower 
leads to a much wider range of outcomes for the model, and may be somewhat 
bimodal, with Blue either being caught by a Red firepower trap, or being able to 
create firepower gaps which it can exploit. In short, treating one side (or both) as a 
�lifeless mass� fails to produce the full range of possible outcomes. 

Future work should investigate the possibility of determining appropriate k values 
(hence armour to firepower ratios) for Blue and Red success. One possibility is that a 
certain level of Blue armour will usually force Red to concentrate its forces in an 
attempt to make use of its superior numbers, leaving gaps for Blue to exploit. If Red k 
is low enough, Blue will be able to exploit these gaps the majority of times. An 
interesting side question which arises is the extent to which armour can be traded off 
against mobility, since extra mobility effectively lowers Red k by allowing Blue to 
spend less time in Red�s weapons range. Certainly, it is evident from the results 
presented that emphasis should be placed on aspects other than firepower and 
numbers, which are the prime parameters for the Lanchester model. An understanding 
of how firepower may be concentrated and manoeuvre exploited has the potential for 
much greater pay-offs than concentrating solely on these Lanchester parameters. 
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APPENDIX: ISAAC parameters. 

 
Personalities: weighting towards ... (threshold range = 2) Linear 

Alive/Injured 

Red 

Alive/Injured 

Blue 

Red flag Blue flag 

Red  10 40 0 1 

Blue 40 10 1 0 

 Meta personalities 

 Cluster Advance combat 

Red = Blue 10 5 3 

 Attributes 

 Fire range Sensor range Movement rate k (baseline) 

Red = Blue 3 5 2 0.05 

 Initial distribution (battlefield size 120x120) 

 Centre position Size 

Red 30,30 15,15 

Blue 90,90 15,15 

Flag 60 60 

Table 2: Parameters for case I. 



 19

 
Personalities: weighting towards ... (threshold range = 5)  

Alive/Injured 

Red 

Alive/Injured 

Blue 

Red flag Blue flag 

Red i) 0 0 0 0 

ii) 10 40 0 0 

iii) 10 40 0 0 

Blue i) 0 10 10 0 

ii) 0 10 10 0 

iii) 40 10 10 0 

 Meta personalities 

 Cluster Advance combat 

Red = Blue 3 1 3 

 Attributes 

 Fire range Sensor range Movement rate k (baseline) 

Red = Blue 3 5 1 0.05 

 Initial distribution (battlefield size 120x120) 

 Centre position Size 

Red 60,60 30,30 

Blue 60,105 15,15 

Flag 60 1 

Table 3: ISAAC parameters for Case II. 
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